"Today, with the launch of the Juno spacecraft, NASA began a journey to yet another new frontier. The future of exploration includes cutting-edge science like this to help us better understand our solar system and an ever-increasing array of challenging destinations."
Juno will cover the distance from Earth to the moon (about 250,000 miles or 402,336 kilometers) in less than one day's time. It will take another five years and 1,740 million miles (2,800 million kilometers) to complete the journey to Jupiter. The spacecraft will orbit the planet's poles 33 times and use its collection of eight science instruments to probe beneath the gas giant's obscuring cloud cover to learn more about its origins, structure, atmosphere and magnetosphere, and look for a potential solid planetary core.
Scott Bolton, Juno's principal investigator from the Southwest Research Institute in San Antonio says.
The NASA Deep Space Network -- or DSN -- is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions.
JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built the spacecraft. Launch management for the mission is the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida. JPL is a division of the California Institute of Technology in Pasadena.
In 2016, the spinning, solar-powered Juno spacecraft will reach Jupiter and enter into a highly elliptical polar orbit that skims only 5000 kilometers above the planet's atmosphere. Building on the results of previous missions, Juno will provide new information to help us determine how, when and where this giant planet formed. Answering these questions for Jupiter is essential for an understanding of the origin of the solar system itself because Jupiter contains more mass than all the other planets combined. Juno will seek these answers with instruments that can sense the hidden world beneath Jupiter's colorful clouds while other experiments investigate the external effects that world produces.
Jupiter has no solid surface. Instead its hydrogen and helium dominated atmosphere grows steadily denser with depth. Ultimately, but we don't know exactly where, the atmosphere must become a fluid in which hydrogen acts like an electrically conducting metal. Still deeper there may be a core of heavy elements and somewhere, somehow, an intense magnetic field is generated. The invisible external tendrils of that field guide charged particles that crash into the polar ionospheres, producing the most intense auroras (the northern and southern "lights") in the solar system. Juno will study these and other characteristics that make Jupiter one of the most fascinating planets in the solar system.
To answer our fundamental questions about origins we especially need to know Jupiter's internal structure and global water abundance. Juno will map the internal structure by studying its influence on the planet's gravitational field with unprecedented accuracy. The water abundance will be determined by microwave radiometers that will detect thermal radiation from deep atmospheric layers, a completely new approach. Water ice brought most of the heavy elements to Jupiter. Knowing the water abundance will tell us the original form of that ice and hence help define the conditions and processes in the original cloud of dust and gas that led to the origin of Jupiter. Those same conditions and processes were forming other planets too. Because this enormous planet contains most of the water in the solar system we can expect this investigation to help us understand the origin of the life-giving water on Earth.
Courtesy of an article dated August 5, 2011 appearing in Robotics Trends, NASA Juno and Juno Mission University of Wisconsin
Comments
You can follow this conversation by subscribing to the comment feed for this post.