An earthquake-and-tsunami zone crowded with 127 million people is an unwise place for 54 reactors
The 1960s design of five Fukushima-I reactors has the smallest safety margin and probably can't contain 90 percent of meltdowns. The U.S. has six identical and 17 very similar plants.
Every currently operating light-water reactor, if deprived of power and cooling water, can melt down. Fukushima had eight-hour battery reserves, but fuel has melted in three reactors. Most U.S. reactors get in trouble after four hours. Some have had shorter blackouts. Much longer ones could happen.
Overheated fuel risks hydrogen or steam explosions that damage equipment and contaminate the whole site--so clustering many reactors together (to save money) can make failure at one reactor cascade to the rest.
Nuclear power is uniquely unforgiving: as Swedish Nobel physicist Hannes Alfvén said, "No acts of God can be permitted." Fallible people have created its half-century history of a few calamities, a steady stream of worrying incidents, and many near-misses. America has been lucky so far. Had Three Mile Island's containment dome not been built double-strength because it was under an airport landing path, it may not have withstood the 1979 accident's hydrogen explosion. In 2002, Ohio's Davis-Besse reactor was luckily caught just before its massive pressure-vessel lid rusted through.
Regulators haven't resolved these or other key safety issues, such as terrorist threats to reactors, lest they disrupt a powerful industry. U.S. regulation is not clearly better than Japanese regulation, nor more transparent: industry-friendly rules bar the American public from meaningful participation. Many presidents' nuclear boosterism also discourages inquiry and dissent.
Nuclear-promoting regulators inspire even less confidence. The International Atomic Energy Agency's 2005 estimate of about 4,000 Chernobyl deaths contrasts with a rigorous 2009 review of 5,000 mainly Slavic-language scientific papers the IAEA overlooked. It found deaths approaching a million through 2004, nearly 170,000 of them in North America. The total toll now exceeds a million, plus a half-trillion dollars' economic damage. The fallout reached four continents, just as the jet stream could swiftly carry Fukushima fallout.
Fukushima I-4's spent fuel alone, while in the reactor, had produced (over years, not in an instant) more than a hundred times more fission energy and hence radioactivity than both 1945 atomic bombs. If that already-damaged fuel keeps overheating, it may melt or burn, releasing into the air things like cesium-137 and strontium-90, which take several centuries to decay a millionfold. Unit 3's fuel is spiked with plutonium, which takes 482,000 years.
Nuclear power is the only energy source where mishap or malice can kill so many people so far away; the only one whose ingredients can help make and hide nuclear bombs; the only climate solution that substitutes proliferation, accident, and high-level radioactive waste dangers. Indeed, nuclear plants are so slow and costly to build that they reduce and retard climate protection.
Here's how. Each dollar spent on a new reactor buys about two to ten times less carbon savings and is 20 to 40 times slower, than spending that dollar on the cheaper, faster, safer solutions that make nuclear power unnecessary and uneconomic:
- Efficient use of electricity.
- Making heat and power together in factories or buildings ("cogeneration").
- Renewable Energy - Half the world's new generating capacity in 2008 and 2009 was renewable. In 2010, renewables, excluding big hydro dams, won $151 billion of private investment and added over 50 billion watts (70 percent the total capacity of all 23 Fukushima-style U.S. reactors) while nuclear got zero private investment and kept losing capacity. Supposedly unreliable windpower made 43 percent to 52 percent of four German states' total 2010 electricity. Non-nuclear Denmark, 21 percent windpowered, plans to get entirely off fossil fuels. Hawai'i plans 70 percent renewables by 2025.
The last two made 18 percent of the world's 2009 electricity (while nuclear made 13 percent, reversing their 2000 shares)—and made over 90 percent of the 2007 to 2008 increase in global electricity production.
In contrast, of the 66 nuclear units worldwide officially listed as "under construction" at the end of 2010, 12 had been so listed for over 20 years, 45 had no official startup date, half were late, all 66 were in centrally planned power systems—50 of those in just four (China, India, Russia, South Korea)—and zero were free-market purchases. Since 2007, nuclear growth has added less annual output than just the costliest renewable—solar power—and will probably never catch up. While inherently safe renewable competitors are walloping both nuclear and coal plants in the marketplace and keep getting dramatically cheaper, nuclear costs keep soaring, and with greater safety precautions would go even higher. Tokyo Electric Co., just recovering from $10-20 billion in 2007 earthquake costs at its other big nuclear complex, now faces an even more ruinous Fukushima bill.
Since 2005, new U.S. reactors (if any) have been 100 percent-plus subsidized—yet they couldn't raise a cent of private capital, because they have no business case. They cost 2-3 times as much as new windpower, and by the time you could build a reactor, it couldn't even beat solar power. Competitive renewables, cogeneration, and efficient use can displace all U.S. coal power more than 23 times over—leaving ample room to replace nuclear power's half-as-big-as-coal contribution too—but we need to do it just once. Yet the nuclear industry demands ever more lavish subsidies, and its lobbyists hold all other energy efforts hostage for tens of billions in added ransom, with no limit.
Japan, for its size, is even richer than America in benign, ample, but long-neglected energy choices. Perhaps this tragedy will call Japan to global leadership into a post-nuclear world. And before America suffers its own Fukushima, it too should ask, not whether unfinanceably costly new reactors are safe, but why build any more, and why keep running unsafe ones. China has suspended reactor approvals. Germany just shut down the oldest 41 percent of its nuclear capacity for study. America's nuclear lobby says it can't happen here, so pile on lavish new subsidies.
A durable myth claims Three Mile Island halted U.S. nuclear orders. Actually they stopped over a year before—dead of an incurable attack of market forces. No doubt when nuclear power's collapse in the global marketplace, already years old, is finally acknowledged, it will be blamed on Fukushima. While we pray for the best in Japan today, let us hope its people's sacrifice will help speed the world to a safer, more competitive energy future.
COMMENTARY: Recently, I have mostly for additional nuclear power investments or subsidies because I felt nuclear power technology was relatively safe, cost-effective and reliable--available 24/7, 365 days, something you cannot say about solar and wind.
The Fukushima nuclear reactor catastrophe has changed that perception. The above articles makes a pretty good case why future nuclear reactor investments should not be made. However, some studies show that nuclear energy is feasible.
- A recent MIT study, makes the case that nuclear power is cost-effective and the there is a plentiful supply of uranium.
- In my blog post dated February 21, 2011 titled, "The Looming Aging Crisis of America's Nuclear Power Plants - Built To Last 40 Years, Can They Last For 80 years", I cite a Nuclear Fissionary study that calculated the total cost of electricity production by kilowatt hour, and although the construction cost of a nuclear power plant is running $6,000 per kilowatt, the weighted average operating costs per kilowatt make nuclear power a bargain when compared to renewables, namely solar and wind. Please refer to the following graphs and charts.
Many countries have placed a moratorium on new proposed nuclear power projects, cancelled other or temporarily stopped construction of others, I am afraid that this will become the situation again. The danger of long-lasting radiation contamination due to nuclear fallout caused by unpredicable accidents like Fukushima, makes you pause and re-evaluate the whole nuclear power thing. Personally, solar and wind is the way to go. They are expensive, but you can build solar and wind farms relatively quick when compared to building nuclear power plants, they produce clean energy, and this a much better alternative tio combat CO2 gas emissions and stave off global warming. This is much better alternative over importing oil, which is strangling our economy. Time is of the essence, the world is already at "peak oil", and we will probably run out of oil by 2050, a scary proposition. I have a feeling that after this fiasco, that goverments eveywhere will expidite investments in alternative energy.
Courtesy of an article dated March 28, 2011 appearing in GreenTechMedia
Comments
You can follow this conversation by subscribing to the comment feed for this post.